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ON DISCRETE INTERACTION OF A PLATE AND A DajrlElGED STRINGER* 

L. S. RYBWOV 

There is investigated the plane contact problem for an elastic system consisting of 
an unbounded plate refnforced by an infinite homogeneous stringer in terms .of per- 
iodically located hard circu3.ar inclusions (rivets), Tfiere are considered to mod%- 
fications of a single damage of the stringer, that is modeled by a compressively 
strained rod: on a section between rivets, and on a section passing through the 
center of the rivets. In both cases the problem reduces to an infinite system of 
linear algebraic equations in the axial components (projections on the stringer 
axis) of the reactive forces transmitted by the rivets. The exact solution of such 
systems is constructed in guadratures by using the Laurent transformation and the 
apparatus of the Riemann-Hilbert boundary value problem. The results obtainedcan 
be used in estimating the residual strength of damaged riveted panels. Someproblems 
concerning the discrete interaction of a plate and an undamaged bar are studied in 
/l-S/. 

1. Formulation of the problem. Let us consider a plane elastic system formed by an 
unbounded thin plate and an infinite homogeneous stringer fastened to the plate by periodical- 
ly arranged rivets. It is assumed that the stringer is fractured once fn some section and 
the external loads acting on the system are represented by constant forces at infinity in the 
plate (homogeneous external field of plate loads), and by concentrated forces applied to the 
centers of the rivets in the stringer (Fig.1). 

Let us introduce the notation: v,E are, respectiv- 
ely, the Poisson's ratio and Young's modulus of the plate 
material, A is the stringer stiffness under tension-com- 
pression !& is the plate thickness, R is the spacing be- 
tween the centers of adjacent inclusions (the rivet spac- 
ing), and r is the radius of the inclusions. Theremaining 
symbols introduced below are considered dimensionless: 

quantities with h linear dimensionality, linear forces in the plate, forces in the stringer 
and the concentrated forces applied to the centers of the inclusions are referred, respectiv- 
ely, to R, ii%/ (1 -I- Y), and A and 8nEM/(i + v)'. 

Let an elastic system be referred to a rectangular Cartesian r,,r, coordinate system 
located in the plate middle surface, and let z = q -t- kct be a complex variable (i = r/-fT. 
Simultaneously assuming the stringer not ruptured8 we imagine it separated from the plate 
(evidently cutting tie inclusiun out) n and we apply the unknown interaction forces X, = X1, -I- 
i&,,, and -X,, respectively, to the centers rr, =zO + msV (m= 0, *f, *2,...) of the inclus- 
ions in the plate and stringer. Here f3 is the stringer slope to the X1 axis. The field of 
elastic displacements and linear forces in the isolated plate is determined by the Kolosov- 
iiuskhelishv&li formulas f6/: 

Let us make the assumptions. 1". Plane Stateofstress 
conditions are realized in the plate, 2'. TM stringer 
is modeled by a bar operating only under tension-compres- 
sion; its weakening due to riveting is not taken into ac- 
count. 30. The rivets in the plate are simulated bystiff 
circular inclusions fastened to the plate along their con- 
tact surfacet the radius of the inclusions is small com- 
pared to their spacing, and the centers of the inclusions 
are on the stringer axis. W. The stringer interactswith 
the plate at its middle surface by meitns of the in~ltzsions. 

This latter assumption excludes from consideration the ec- 
centricity of stringer attachment to the plate relative to 
its middle surface, and the friction force betweentheplate 
and the stringer. 
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w(z)=U*+iUg=xtpf2)-2(nf-~~ 

N,, + NBS = 2 hp’ (z) + cp’oj 

iv,, - Nxl + 2iNll = 2 hp” (z) + 9’ @)I, x = (3 - v)/(l + v) 

t1.11 

Here k is the displacement along the 2, axis (a = 1,2), iV,p (a, p = 1,2) arethecartesian 
components of the linear force tensor, m(z) and q(z) are complex potentials, generally 
determined frMn the solution of the plane problem of elasticity theory for a plane with a 
periodic system of stiff circular inclusions. The assumption about the smallness oftherivet 
radius compared to their spacing (in practice e = r/R = 0.02-0.1) permits us to limit our- 
selves to taking account of the mutual influence of the inclusions asymptotically by using 
the superposition principle in the form /6/: 

cpfz) ='p* (2) i- ,$, (Pm(z), (1.2) 

fib (4 = rz, 4k (4 = r2 
(pm(z) = -x, In(a - 2,) 

q, (z)=xX, In (z--em) +G * -t- I m 
&JT 1 

(1.3) 

(?n=O,-&fi,f2,...; 4l?=N,,~-f-N,,-; 

2I” = N# - Nl,= + 2iNla”) 

Here cp,(z),Itr,(z) are the potentials for a plane without inclusions due to a homogeneous ex- 
ternal field of loads given at infinity by tensor component of the constantforces Nag" (a,p = 
1,2) , and (Pm (z),$Pm(z) are potentials foraplane with just an m-th circular inclusiontowhose 
center the force X, is applied. 

The static conjugate conditions of adjacent sections of an isolated stringerattbepoints 
z, (m = 0, &I, f2,...) have the form 

(1.4) 

where X,,,* is the complex vector of the external force acting on the stringer at the center of 
the rivet m, N,, is the force in the stringer at the section m (between the rivets m and 
m i- 1), and w is the stiffness parameter of the elastic system. 

By using the relationships 

.X,,e-'@== P,,, -1 iQm, _&*e"B=P,* -1. if&* 

we, respectively, introduce the axial (P,, P,*) and transverse (QmrQm*) components of the 
forces X, and -%I,*. According to (1.4), 'Q,,, = Qm*, and 

Pm = Pm* + o (iv, - N,-,) 11.5) 

In theundamaged system, the conditions for combined strain of the plate and stringer will be 
satisfied if it is required that the equality 

Re {Iw (z& - w (z,)le-‘fi) = IV, 

would be valid for all integer m. 
Transforming its left side by using the formulas (1.1) -<1.5), and taking account of the. 

smallness of e we find 

y- ,z_ rti,-,,Pn = i\‘, (2.6) 

rO = -r_1 = -1 + E2 - 2X ln.3 (1.7) 

r,=-r-,_l= 2xia(* +-n-l) -8 ,e2~~:12 (Ii#O,---) 

2y= +$ (A-,,*= I- Iv,,9 t (NH= - !Y&cos 28 {- 21V1$" sin 2s 

For all integer m the set of relationships (1.5) and (1.6) form an infinite system of 
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linear algebraic equations in the required quantities N,,, and P,. It is later convenient 
to take the reactive forces P,as the fundamental unknwns. Eliminating N,,, from the 
relationships mentioned, we see that the system of equations 

p,+m 5 &_JJ,=P,* (m=O,fl.f2~~*-) 
*-lo 

(1.8) 

& = 2P0 = -2(i - e* + 2% ln E), & = r1 + r_1 = 1 - 1.75~' + 2xln2E (1.9) 

determines P,. 
N,=r,i_r_n=2%ln(l-_n-‘)-i-2Eg nl~s~~Js (InI#o,i) 

Formulation of the problem of discrete interaction of the plate and an undamagedstringer 
is thus completed. 

Turning to the formulation of an analogous problem for a single damaged stringer, we 

extract two, in principle, possible versions in its damage. In the first version, we assume 
the stringer to be ruptured at a section passing through the center of some rivet, whereupon 
the coupling of the stringer to this rivet is lost (Fig.1). In the second version the ruptur- 
ed section of the stringer is between rivets and does not affect coupling of the stringer to 
the rivets. 

Let us first examine the first version of stringer damage. For definiteness, we consid- 

er the ruptures section to pass through the center of the zero rivet. In this case (1.6) are 

valid for all integer m#O, --1. As regards the conjugate conditions (1.51, then we should 
set N+ = No = 0 therein. Eliminating the forces Nm which are different from zero from 
the system (1.51, (1.6) (taking the stipulations made into account), we find 

p, + o % B,,P,= P,* (m=+2,+.3,...) (1.10) 
(Is--m 

(1.11) 

P_~ - 0 5 r_s_nPn = P_~* -WY, P, = PO* 
n=--oo 

In studying the second damage version, we assume the stringer to be ruptured over some 
section of the part -1. The compatibility conditions (1.6) remain valid for all integer 
m# --i for such a realization of the damage, and the dependences (1.5) are supplemented by 

the evident equality N-r = 0. Eliminating the forces N,(m# -1) from these equations, 
we obtain 

P, + I0 g l&&P,= Pm* (m = 1, * 2, & 3, . . .) (1.12) 
n=-1D 

p. + clj 5 r_“Pn = PO* + 0~ 
"S-N 

(1.13) 

P_~ - o i r+2, = P_,* - oy 
7&=--m 

Just as the system (1.8) for the undamaged stringer, the systems (1.101, (1.11) and (1.121, 
(1.13) permit finding the reactive forces P,, for the appropriate versions of stringer damage. 
In all cases the elastic field of forces and displacements in the plate are determined from 
them in conformity with (l.l)-(1.3) while the non-zero forces in the stringer are determined 
from (1.5). 

2. Solution of infinite algebraic systems. Let us examine the formal expansions 

B (2) = 5 H,I~, r i2)= % r&m’ ms--a V?l=-Q 
that are Laurent transformations of the infinite sequences (B,,,) and {pm), respectively. It 
can be shown that these functions are regular only on the unit 
with (1.7), (1.91, a dependence 

B(5)=(1- 0r(6), (6EC) 

exist between them. 
Let us assume that the functions 

circle C and, in conformity 
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P(z) = 5 P,P, P*(z)= 5 p,*p 
7n=--r m=-cc 

are regular in, 
the solution of 
not restrictive 
always from the 
transform 

at least, the unit circle C. For P(z) this assumption is justified by 
the problem. AS regards P*(Z), then the customary regularity condition is 
since the regularity of P*(z) in a ring containing C follows practically 
given distribution of forces P,,*. By the definition of the inverse Laurent 

(2.1) 

Analogous relationships hold for P,* and P* (2). 
Let US note that integration over the contour C is performed counter-clockwise in (2.1) 

and below. 
In the case of an undamged stringer, by using relationships of the type (2.1),thesystem 

(2.1) is reduced to the form 

I 
Zni 5 [G (5) P (:) - P* (:)I ;+‘-l d, = 0 

C 

(2.2) 

G(5) = 1 -I- d(5) = 1 + ~(1 - <)I’(Q (<EC) (2.3) 

where the exponent m runs through a whole set of integers. Hence, it can be written 

P(5) =C‘'(V'*(~).(~EC) 

Substituting this expression into (2.11, we find that the solution of the system (1.8) has 
the form 

c. 
P,= 2 g,-nP,* (w =o, f 4,*2,. . .) 

VI=--1 (2.4) 

The quantities g,, here are evaluated from the formulas 

1 ’ C.-‘-d s i ? 
gn= 2ni s %du (n=O,Sl,+z,...) 

C 
*=-it- 

0 

g (a) = G (efo) = 1 -t 20 {( COSU-1) ‘i f2Xh12E+E2 
m=* 

We turn to the construction of the solution of the system (l.l), (1.11). Just as the 
system (1.8), by using relationships of the type (2.1), the infinite subsystem (1.10) is re- 

duced to (2.2), which is valid for any integers m=+ 0, 33. All these equations will be sat- 

isfied if 

P(Q=P+(~)+P-(C)=G-1(S)[P*(5)+a,6+a,+a~5-'] (<EC) (2.6) 

Here P+(a) and P-(z) are, respectively, the regular and principal parts of the function 

p (4. and al, ao, uel are still unknown constants which will be determined by the still unused 
equation (1.11). 

By using relationships of the type (2.1), the first two can be represented in the form 

&ill +or(5)1P(6)S-ad5=P~* +a~', &- 5 If --4r(5)1J'(C.)dr,= PA*-- WY 
c C 

Substituting (2.6) here with the dependence (2.3) taken into account, we find 

P+ (1) - P (1) = p*+ (1) - pz- (1) + by - a, - a, - a_, 

P’ (1) - P- (1) = p*+ (1) - p*- (1) + 2my + a, + a, f a-, 

Here P*+ (1) and P*-(I) are the limit values, respectively, of the regular p+(z) and the 

principal P-(z) parts of the function P*(Z) at the point z = 1. 
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These latter equations are equivalent to the identities 

~+ao+a-~=o (2.7) 

p+ (1) - P- (i) = p*+ (1) - F- (1) + 2q (2.8) 

In order to convert (2.8) into an explicit dependence between the required constants, the 
functions P+(s) ana P(z) must be found. In this connection, we note that the expression 

P(<)=P+(~)+P(~)= G-1(~)[P*(6)+~,(~-6-1)+dr,-6-1)1 (6EC) (2.9) 

resulting from (2.6) and (2.7) can be treated as the simplest Riemann --Hilbert problem. Its 
solution that satisfies the evident condition P(m)= 0 has the form /7/ 

P* (g) = f r+ (2) + oJo* (2) + a&* (z)l (I E D*) (2.10) 

We have here introduced the piecewise-holomorphic functions 

p*(z)= -& &;;2z, , b*(L)=& 
5 5 

(i - m 4 (2.11) 
G (6) (S-g) 

)11*(z)=& 
s 
AL(s)(y:; (eE&C) 

and the symbols D+ ana D-are for &mains, respectively, inside ana outside the unit circle C. 

The Sokhotskii formulas for the functions (2.10) and (2.11) permit reduction of (2.8) to 
the form 

aago+ a1(go + g1)=ftP*+(i)- P*-(i)1 + WY--P(l) (2.12) 

2p(1)=p+(i)+f(i)=3 p*K)dc = E Pm' 2 Rn 
c c (I) (6 -i) __L, 

n=--m 

where it is taken into account that (see (2.11) and (2.5)) 

we note that according to (2.1) aa (2.9) 

P,= 5 fh-np,+ + ao(t?m- ht1) + a1(&l-1- g,+l), (m = 0, *:1, *2,.. .) 
n--co 

Hence, taking account of the last equation in (1.111, we 0btal.n 

(2.13) 

(2.14) 

ao=&(po*- 2 &Pm*) 
*-9D 

The constant a, is now easily determined from (2.12). Replacing a, and al in (2.14) by their 
obtained expressions, we find that the solution of the system (l.lO), (1.11) has the form 

pm= N r, (2.15) 

--OD It-oD 

=y-=+oY-P(~)] gm;;2, (m = 0, *1,*2,...) 

The solution of the system (1.121, (1.13) can also be constructed analogously. However, 
there is no need for this since it can be derived from the preceding reasoning if al=0 is 
taken therein. The desired solution is a corollary of (2.12) and (2.14) for a, = 0 andhas 
the form 
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By using relationships of the type (2.1) the infinite subsystem (L.12) is indeed again 

reduced to (2.2) which is valid now for all integers m+o,-1. The function (2.6) will evid- 
ently satisfy these equations under the condition 4% = 0. Furthermore, it can be seen that 
by using this function the equations(1.13) axe converted, just as the first and second equa- 
tions of (1.11) into the identities (2.7) (for a,=O) and (2.8). Tracing the further behav- 
ior of the construction of the solution of the system (l.lO), (l.ll), we arrive at (2.16). 

The solutions of (2.15) and (2.16) show that the calculation of the reactive forces P,,, 
in a system with a damaged stringer would reduce, as in an undamaged system, to the quadratur- 
es (2.5). Comparing these solutions with (2.4), we see that the first terms therein 
correspond to the system with undamaged stringer, while the influence of the damage is des- 
cribed by the subsequent terms. 

It should be emphasized that all the preceding reasoning, including the final results 
(2.15), (2.16), is valid for the kinds of stringer damage stupulated above whose point of 
location relative to the rivet numbering taken was strictly fixed. This latter does not 
constrain the generality of the results obtained, which can be extended, as is easily seen, 
to the case of an arbitrary location of the stringer damage relative to the rivet numbering 
by a shift in the index. Thus, if the stringer is ruptured at the rivet s, thenthesolution 
is obtained from (2.15) after replacing m in its right side by m-s. Analogously, inorder 
to find the solution of the problem for a stringer damaged between rivets within a space s. 
it is sufficient to replace n in the right side of (2.16) by m-s-i. 

In conclusion, let us note that the approach elucidated permits the solution of even more 
complex problems about the discrete interaction of an unlimited plate and a multiply damaged 
infinite stringer. 

3. Some numerica'l results. As an illustration, let us consider the case when only 
the external field of plate loads acts on an elastic system. Then P,'=O(m = 0, +i,*2, , ‘ .L 

P(f) = 0 (see (2.13)) and according to (2.15), (2.16) 

P _m_ =lBn,-l--ln+l 
Ro fR1 

(m = 0, _ti, &- 2....) (3.1) 
OY 

if the stringer is damaged at the zero rivet and 

) (3.2) 

between rivets in the section- 1. 
Some results of calculating the reactive forces in the 

rivets loaded most are represented in Figs.2 for v='/, and 

1. 

2. 

e = 0.f i the solid lines correspond to (3.1) and the dashes 
to (3.2). Let us note that under the same loading of an 

elastic system with an undamaged stringer, the reactive forc- 
es at all the rivets are zero (see (2.4)). 

Fig.2 
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